Localisation des NAO

 

 logo-iut

Localisation des Nao

Abstract

Le projet de localisation des robots Nao a été réalisé par Mathieu GARDIN, apprenti en DUT Génie Electrique et Informatique Industrielle auprès de Endress-Hauser Flowtec AG.

Introduction

Les robots Nao sont une avancée innovante dans la robotique. Grâce à sa panoplie de capteurs et d’articulations mécaniques, il se rapproche des fonctionnalités de l’être humain. On y retrouve entre autre un moyen vocal de répondre à des injonctions, des capteurs pour pouvoir entendre la voix, une fonction « visuelle » pour observer son environnement à l’aide de caméras ainsi que des capteurs permettant aux Naos de marcher. La majorité des fonctionnalités du Nao le destinent à une interaction avec son environnement extérieur. Cependant, à l’heure actuelle, aucun système n’existe pour pouvoir créer une fonction de géo-localisation dans cet environnement. A travers cette présentation, nous allons chercher à développer cette fonctionnalité et ainsi élargir les possibilités du Nao.

Présentation du Sujet

Pouvoir localiser un Nao lors de ces déplacements dans une pièce, tels a été le projet qui nous a été confié par Mr CUDEL. L’intérêt de ce projet résidait de pouvoir localiser à l’aide d’une interface graphique doublé par un serveur de base de données. L’objectif est que le Robot Nao puisse écrire dans la base de donnée et que l’interface graphique située dans un navigateur internet puisse effectuer une demande auprès de la base de donnée et se mettre à jour automatiquement.

Pour la réalisation du projet, on utilisera un raspberry pi 2 model b qui hébergera la base de donnée et sera connecté à l’aide d’une clée 3G sur le routeur pour communiquer avec le robot Nao

Organisation du Projet

La réalisation de ce projet a suivis un ordre précis:

Phase de concept :

  • Évaluation de la problématique actuelle et des solutions à mettre en place
  • Réflexion sur les langages de programmation à utiliser
  • Découverte et Apprentissage de l’utilisation des outils numériques (Raspberry pi 2 model b)

Analyse des fonctionnalités:

  • Création d’une base de donnée
  • Création d’une interface graphique
  • Création d’un moyen de communication entre Raspberry et Nao
  • Mise à jour automatique de l’interface graphique
  • Intégration des données spatio-temporel du Robot

Création de la partie design :

  • Réalisation d’un plan de la pièce
  • Intégration des balises sur l’environnement graphique

Intégration des fonctionnalités :

  • Mise en place de la base de donnée
  • Intégration de l’interface graphique au navigateur Web
  • Utilisation de la communication entre Robot et Raspberry

Phase de test:

  • Test des fonctionnalités
  • Correction des erreurs

Cahier des Charges

Base de donnée
La question de la base de donnée a surtout été conditionné par un choix technologique. MySQL ou SQlite. Dans un premier temps, il était prévu de partir sur une base de donnée en MySQL mais après quelques recherches, il a été montré que l’utilisation de SQlite économiserait les ressources du Raspberry  logo-mysql-170x115Sqlite
 Interface / Gestion base de donnée
Pour pouvoir créer les bases de données et les organiser, le choix s’est porté sur l’interface Phpmyadmin. Un outil conçu en PHP permettant l’administration des bases de données. Travaillant sur un système Linux, il était plus facile d’utiliser cet outil que de passer par l’invite de commande.  logo-og
 Interface graphique
Pour la création du plan d’une salle de Tp, on a utilisé un logiciel d’architecture appelé Kozikaza, permettant de re-constituer la salle de travaux pratiques avec ces obstacles et ces dimensions  kozi-kaza-mmi-deco
 Langages de programmations

Concernant les langages de programmation, plusieurs solutions ont été proposés. On pouvait utiliser un langage python presque exclusivement ou se porter sur des langages de programmation de type Web => PHP, HTML, AJAX, et JAVASCRIPT.

L’objectif de ce projet étant de travailler sur une interface graphique Web, il a été décidé d’utiliser PHP, HTML, AJAX, et JAVASCRIPT

 shutterstock_184983572-1000x480

Communication

La communication entre le robot Nao et le Raspberry se fera à l’aide d’un protocole de type UDP. Le robot enverra sa position dans une chaîne de caractère qui sera ensuite traduit par une table de transcodage au niveau du raspberry

Développement

PHPmyadmin

L’utilisation de PHPmyadmin se fait en local sur le raspberry : 127.0.0.1

phpmyadmin

Sur les besoins de ce projet, il a été demandé 3 types de données:

  • La première se base sur quel robot Nao envoie les données
  • La deuxième concerne le jour et l’heure à laquelle les informations ont été envoyés
  • La troisième nous renseignera sur la position du robot, si il se trouve à la balise 1, 2, 3 ou 4. Ces « balises » seront placés à différents endroits dans la pièce

Dans notre cas, on pouvait créer les tables de données manuellement, une pour chaque information ou programmer en SQL la création automatique de ces tables (visible ci-dessous en rouge). Pour les besoins du test, il a été décidé de créer une auto-incrémentation des données comme détaillés dans le document ci-dessous en bleu.

— phpMyAdmin SQL Dump
— version 4.4.14
— http://www.phpmyadmin.net

— Client : 127.0.0.1
— Généré le : Ven 22 Avril 2016 à 08:51
— Version du serveur : 5.6.26
— Version de PHP : 5.5.28SET SQL_MODE = « NO_AUTO_VALUE_ON_ZERO »;
SET time_zone = « +00:00 »;
/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8mb4 */;–
— Base de données : `projet`
—- ———————————————————-
— Structure de la table `event`
CREATE TABLE IF NOT EXISTS `event` (
`ID` int(11) NOT NULL,
`robot` int(11) NOT NULL,
`position` int(11) NOT NULL,
`date` datetime NOT NULL
) ENGINE=InnoDB AUTO_INCREMENT=82 DEFAULT CHARSET=latin1;–
— Index pour les tables exportées
—-
— Index pour la table `event`

ALTER TABLE `event`
ADD PRIMARY KEY (`ID`);–
AUTO_INCREMENT pour les tables exportées
—-
AUTO_INCREMENT pour la table `event`

ALTER TABLE `event`
MODIFY `ID` int(11) NOT NULL AUTO_INCREMENT,AUTO_INCREMENT=82;
/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;
  • La table Robot identifie quel Nao a envoyé l’information
  • La position correspond à quelle balise a été repéré le robot
  • La date elle nous indique donc la position temporelle du robot

 

Plan de la salle de travaux pratiques

Le design de l’interface graphique réalisé à l’aide du logiciel d’architecture prend en compte une partie du mobilier de la salle ainsi que ces dimensions.

plan

Dans le cadre du projet, il a été intégré de manière très simple 4 balises numérotés de 1 à 4 avec des couleurs différentes représentant les positions du robot Nao comme montré dans l’image ci-dessous :

WP_20160606_001

 Programmation PHP / HTML

La programmation de l’interface graphique et de sa communication avec le raspberry s’est effectué avec code en PHP. Le principe est d’initier la communication en lui donnant les « username » et « password » de PHPmyadmin pour aller lire ce qui est écrit dans la base de donnée

 

<?php
$servername = « localhost »;
$username = « root »;
$password = « dptgeii »;
$database = « projet »;

// Create connection
$mysqli = new mysqli($servername, $username, $password, $database);

// Check connection
if ($mysqli->connect_error) {
die(« Connection failed:  » . $mysqli->connect_error);
}
else{
//QUERY

 

Une fois que la connexion est effectué, on utilise un code en Jquery pour rentrer dans notre table « event ».

else{
//QUERY
if (isset($_POST[‘reset’])) {
$query = ‘TRUNCATE TABLE event’;
$mysqli->query($query);
}
$query = ‘SELECT * FROM event LIMIT 10’;//QUERY
$result = $mysqli->query($query);
$num = mysqli_num_rows($result);$array = array();
//TEST
if ($result->num_rows > 0) {
while($row = $result->fetch_assoc()) {
array_push($array, $row);
}
}
//print_r($array);
}

Le reste de la programmation s’effectue en HTML pour pouvoir donner « vie » à l’interface graphique et implémenter les données sur la plate-forme Web

planF

Perspectives / Difficultés rencontrées

Une des premières difficultés a été l’installation et la mise à jour des logiciels sur le raspberry. L’intégration de PHPmyAdmin et du langage SQL à l’aide de la console linux intégrée a montré des réticences et a entraîné une perte de temps importante. La communication UDP qui devait s’ajouter comme partie finale du projet n’a finalement pas pu être réalisée par un manque de temps et une adaptation du code difficile à mettre en œuvre à notre niveau.

Les perspectives si la communication UDP était correctement installée et que le traitement des informations en provenance du Robot Nao se réalisait sans conflit, permettrait une étude de la localisation du robot sur une plus grande échelle. On pourrait travailler sur le bâtiment B en entier et pas juste au niveau de la salle de travaux pratiques.

Par la suite, l’intérêt du projet deviendrait plus prononcé si le raspberry émettrait des ordres de déplacements aux robots Nao. La localisation avec les capteurs du robot permettrait de créer un système d’acquisition quand le Nao arrive à destination.

Enfin en dernier lieu, transformer cette plate-forme Web pour l’intégrer dans une application Android permettant une utilisation mobile du projet.

Bilan

Par ce projet, j’ai eu la plaisir de pouvoir travailler sur des langages de programmation qui m’était jusqu’à lors inconnu. J’ai pu acquérir des compétences de programmation en base de données (SQL), langages Web (Ajax, Jquery, HTML, PHP, Javascript et CSS). Ce défi de travailler dans d’autres langages de programmation était une source de difficultés en plus mais m’a permis de créer un défi personnel pour la réalisation de ce projet.

Il est vrai qu’à l’heure actuelle, la localisation du robot Nao s’arrête à une simulation avec la plate-forme Web et il est toujours décevant d’un point de vue personnel de ne pouvoir mener à 100% la réalisation d’un projet. Mais les bases ont été crées et fonctionnent sans erreur. Pouvoir améliorer ces bases et en faire la naissance de nouveaux projets pour de futurs réalisations justifie le besoin d’un tels projet et surtout son importance dans l’enseignement du GEII.

A ce titre,  je tiens à remercier Mr Cudel d’avoir autorisé la réalisation de ce projet même en étant seul dessus. Cela m’a permis de réaliser ce projet personnel de travailler avec des outils Web et pouvoir appréhender le croisement entre Robotique et environnement Web.


Memory

Jeu

Le projet Jeu Memory a pour but de créer un jeu de carte Memory sur ordinateur, qui devra être codé en language C grâce à l’outil Codeblocks , ainsi que l’utilisation de la bibliothèque graphique SDL2. 

Sans titre - 25

Read More


Vélo Magnétique

 

logo-iut

GEII

 

Projet: Vélo magnétique

Véloseul

BOULBAIR Badr 

PIVERT Anthony

 

Sommaire:



Présentation du projet

Tous les étudiants du GEII, en première année sont confronté à un challenge au cours de leurs deuxième semestre. Ils sont tenus de choisir un projet parmi quatorze sujets présentés, dans notre cas il s’agit du Vélo magnétique. Nous devons réaliser ce projet dans le cadre du module « Études & Réalisations », dont la notation comprend plusieurs facteurs, bien entendu la réalisation du projet, mais également la communication au sein du groupe, l’implication des différents membres, et la conduite du projet.

Les Intervenants du Projet Vélo Magnétique est Anthony PIVERT et Badr BOULBAIR.

Tout le monde (ou presque) aime faire du vélo, cela permet de s’entretenir, se déplacer écologiquement, ou tout simplement de se divertir au cours d’une balade. Dans tous les cas nous fournissons un effort physique, et donc de l’énergie.  Mais il est difficile de quantifier, et même de pouvoir réutiliser cette énergie avec un vélo ordinaire.  C’est pourquoi nous avons fait un vélo capable de vous montrer l’énergie que vous produisez en temps réel, et même d’utiliser cette énergie afin de : Charger son smartphone/allumer DES lampes/ et même utiliser des objets tel qu’une perceuse. Dans la seconde partie du projet nous avons fait en sorte que plus la personne qui pédale essayera d’aller vite plus la contrainte au niveau du pédalier sera grande (principe du vélo elliptique), par le principe du frein magnétique, tout en gardant un vélo utilisable par un large intervalle de personnes.



Cahier des charges

mindmap

 

 A) Diagramme Bête à corne:

La bête à cornes est un outil de représentation de questions fondamentales. (A qui rend il service, sur quoi agit-il, dans quel but)

  B) Diagramme Pieuvre

Le diagramme pieuvre regroupe les fonctions principales ainsi que les principales contraintes du projet. Dans notre cas nous avons un diagramme qui peux être divisé en deux parties.

Diagramme globale:

 

DIAGRAMME2.0

FP1 Générer de l’énergie électrique en fonction de l’énergie mécanique produite
FP2 Contrainte de pédalage du au frein magnétique
FC1 Le budget de ce projet est de 200€
FC2 Doit se fondre dans le décor
FC3 Utilisation de matériaux approprié
FC4 Garantir la sécurité de l’utilisateur
FC5 Accessible par un large publique

 

Read More


Onduleur

IUTGEII

 

 

 

 

Projet Maquette Énergie :

Onduleur

hjaja

 

GEII 1A 2015-2016 MULHOUSE

 


Sommaire :


Read More


Système Embarqué Mont Blanc

RESUME 

     Ce projet a pour objectif la conception et la fabrication d’un module autonome ayant la capacité de prendre certaines mesures physiques .(température, pression, humidité et position GPS). Ce système devra stocker ces données pour les transférer par la suite à un ordinateur.

Il sera utilisé dans de condition extrêmes puisque son but sera d’être utilisé lors d’une ascension du Mont Blanc.

Read More


NAO show lumineux



Résumé

 L’objectif du projet est de faire danser dans la salle B19 un robot NAO via le logiciel chorégraphe 2.1.3 et d’utiliser un serveur DMX afin que Nao donne les ordres aux projecteurs en synchronisation avec la musique selectionnée au préalable.

projetnao

Read More


ROBOTS AQUATIQUES


Sommaire

 

Introduction

Présentation du sujet

Cahier des Charges

Budget détaillé

Développement

Gestion de projet

Manuel Technique

Bilan

Bibliographie

Remerciements

 


Introduction

 

Etudiants de première année en département GEII à l’I.U.T de Mulhouse, nous avons eu la chance de pouvoir choisir entre différents sujets de projets proposés par les enseignants. Une fois les groupes réalisés, nous pouvions commencer à travailler sur un projet avec une grande liberté tout en aillant accès à l’aide des enseignants si besoin. Pendant 4 semaines, le but était à la fois de gérer la conduite du projet, l’étude et la réalisation de celui-ci.

⇑Sommaire

 


Présentation du Sujet

 

Nous avons lancé le projet par une visite à l’école Freinet de Mulhouse. L’objectif était de faire découvrir aux enfants la robotique. Les enfants étaient prévenus de notre visite et avaient pour mission de nous dessiner le robot de leur rêve sur le thème de notre projet : « Robot Aquatique ». Nous sommes donc venus récupérer les dessins afin de nous donner une idée des robots que nous allions devoir réaliser.

Ce que nous avons retenu :

  • Faire un robot « observateur » capable de se déplacer de façon autonome et de filmer les environs.
  • Faire 2 robots « combattants » capables de tirer de l’eau l’un sur l’autre et créer un jeu autour de cela. Ces robots sont quant à eux commandés par des manettes, afin de laisser les enfants jouer avec.

Nous avons aussi pu leur faire construire des robots Lego, ainsi que leur montrer ce qu’était dans les grandes lignes la programmation sur ordinateur.

⇑Sommaire

 


Cahier des Charges

 

Cadre du projet :

 

Contexte :

  • Collaboration avec les enfants de l’école Freinet afin de construire des robots qui répondent dans la mesure du possible aux attentes des élèves.
  • Des recherches ont été effectuées pour le choix des composants et sur la manière de construire les robots. Des tests de flottabilités ont également été effectués sur la coque confectionnée par les membres du groupe.

Acteurs :

  • Les enfants dans la recherche d’idées
  • Notre groupe de projet, soit : SEDIRI Aladin, FOUCAULT Antoine, LAVALLEE Arthur, DEVERCHIN Arnaud, DECKER-WURTZ Alexis, BERTRAND Christopher et GAECHTER Hugo dans les changements à apporter aux idées pour les rendre réalisables et les réaliser
  • Mr HUEBER et CHOISY en tant que profs référents

Besoins :

  • Connaissances techniques à acquérir dans la construction physique et la programmation des robots
  • Construire des robots fonctionnels tout en répondant aux attentes des enfants
  • Respecter les contraintes de sécurité, et celles imposées de coûts et de délais

But :

  • Ce projet à pour but de promouvoir le département GEII aux journées portes ouvertes, ainsi que de sensibiliser les enfants de l’école à la robotique. Il est important de montré que la robotique est une discipline qui nous intéresse et nous intrigue, c’est pourquoi ce projet est très apprécié car il nous permet de mettre en pratique tout ce qu’on connait de ce domaine, d’apprendre de nouvelles choses, tout en renvoyant pour le GEII l’image d’être un département qui innove dans ses méthodes d’apprentissage.
⇑Sommaire

Contraintes :

 

Budget :

200e imposés, extensible si besoin en appelant l’aide d’autres groupes qui n’ont pas besoin de tout utiliser

Délais :

  • Première date butoir à la JPO (1 robot fonctionnel en partie au moins nécessaire)
  • Date à laquelle les enfants viennent, où tous les robots doivent être fonctionnels, testés et approuvés (date en attente)
  • Date de fin de projet à laquelle tout doit être fini et présentable (26 Juin)

Sécurité :

Celle des robots et des enfants, s’assurer de l’étanchéité des robots et empêcher des fuites de courant dans l’eau.

Les normes officielles de sécurité des enfants sont à la charge de l’école.

Aucune norme officielle ne nous concernent dans la construction de nos robots, on ne trouve que des normes concernant des robots industriels ce qui n’est pas notre cas.

Taille du groupe :

Nous sommes 7 à travailler ensembles sur le même projet, ce qui exige une organisation et répartition des tâches irréprochables pour ne pas rendre certains travaux infructueux. On se sert donc de Google Drive pour avoir un tableau des tâches que chacun doit faire et pour quand. Chacun peut écrire sur ce fichier pour rendre compte de l’avancement de ses travaux et ainsi éviter des mésententes au sein du groupe.

⇑Sommaire

Objectifs du projet :

 

Faire découvrir aux enfants les possibilités mais aussi les limites de la robotique, tout en rendant le projet fun à découvrir à travers le contrôle des robots et d’un jeu.

⇑Sommaire

Ressources matérielles :

 

  • Coque (Polyester)
  • Hélices
  • Gouvernail
  • Moteurs
  • Cartes Arduino + Manette ou smartphone (Interface H/M)
  • Piscine

 

Ressources Humaines :

 

  • Membres de notre groupe
  • Les enfants (clients)
  • Profs référents (Mr HUEBER et CHOISY)
  • Autres groupes de projet pour bénéficier d’extensions de budget
⇑Sommaire

Graphiques :

  • Bête à cornes :

Bete a corne

⇑Sommaire
  • Pieuvres :

Générale :

Pieuvre GénéraleTableau Pieuvre générale

⇑Sommaire

Robot observateur :

Robot observateur Pieuvre

Tableau Pieuvre Robot obs

⇑Sommaire

Robots combattants :

Pieuvre robots combattants

Tableau pieuvre combattants

⇑Sommaire

GANTT :

Prévisionnel :

GANTT Prévisionnel

⇑Sommaire

Réel :

GANTT Réel

⇑Sommaire

 


Budget détaillé

 

Tableau budget

Liens :
1
2
3
4
5
6
7
8
9
10
11 et 13

Budget alloué : 200 €

Dépenses : 261,49 €

 

⇑Sommaire

 


Développement

 

Alimentation

 

Nous avons 2 moteurs sur le robot observateur :

  • Un pour avancer/reculer (Moteur courant continu) et le second pour tourner (Servomoteur)

Et 3 moteurs sur les robots combattants :

  • Un pour avancer/reculer (Moteur courant continu) et le second pour tourner (Servomoteur) et la pompe

 

Le problème rencontré dans les 2 cas était qu’une seule batterie ne suffisait pas, car lorsqu’on fait tourner tout les moteurs d’un bateau, la chute de tension provoquée était trop importante et faisait planter l’arduino.

 

Notre solution a été de mettre 2 batteries sur les bateaux :

  • Une de 9V pour alimenter l’arduino, arduino qui servira ensuite à alimenter le servomoteur
  • Une de 12V pour les autres moteurs (MCC pour l’observateur, MCC et pompe pour les combattants)

 

Alimentation

 

⇑Sommaire

Manette

 

Nous voulions au départ récupérer une manette déjà existante, type voiture commandée, afin de récupérer le récepteur, le mettre sur notre bateau plutôt que sur la voiture et réutiliser ainsi un fonctionnement déjà créer et simplement l’adapter à notre besoin.

Seulement, les manettes récupérées ne marchaient pas bien, beaucoup de composants étaient manquants, nous avons rencontré énormément de problème en voulant opter pour cette solution et ils auraient étés trop longs à résoudre. De plus, nous n’aurions en rien créer la communication, et le but de ce projet n’est pas de récupérer mais de créer.

 

Finalement, nous avons donc rajouter un shield USB sur l’arduino et un donggle bluetooth associé à une manette de PS3, ce qui nous a fait programmer : Programmation Commande Bateau

⇑Sommaire

Donggle

 

Nous pensions avoir un problème puisque le donggle bluetooth utilisé ne fonctionnait pas, mais c’était finalement simplement un composant dessoudé, nous l’avons donc simplement ressoudé.

 

⇑Sommaire

Servomoteur

 

Nous voulions récupérer pour les 3 bateaux 3x les mêmes servomoteurs récupérables à l’I.U.T, mais pour les robots combattants nous avons rencontré un problème de conflit avec la manette. En effet, soit le programme du servomoteur prenait de le dessus et fonctionnait à l’instar de celui de la manette, soit l’inverse, le programme de la manette fonctionne mais pas celui du servomoteur.

On a finalement du en prendre 2 nouveaux pour les robots combattants afin de régler ce problème.

 

Cela a entraîné un nouveau problème : Comment programmer ces nouveaux servomoteurs, et où trouver les drivers, étant donné qu’ils ne sont pas faits pour être programmés via arduino.

(Rappel : Programmation Commande Bateau)

 

⇑Sommaire

Pompes

 

Nous avons d’abord créer une pompe avec un petit moteur et des tubes, mais cela ne fonctionnait pas à 100% car nous avions un problème d’amorçage/réamorçage, nous étions obligés d’aspirer l’air bloqué dans la pompe afin de la lancer, et si l’angle de tir devenait trop important le même problème arrivait. Il était donc inenvisageable d’interrompre systématiquement le fonctionnement des robots.

Notre solution fut d’acheter de nouvelles pompes. En ce qui concerne le programme pour l’activer, nous avons trouvé un schéma électrique pour gérer un moteur à courant continu avec une pin de l’arduino

Cela comprenait une diode anti retour, 2 résistances et un transistor npn.

MCC schéma

Ça ne fonctionnait pas.

On a donc essayé de rajouter un transistor npn supplémentaire qui piloterait le précédent, mais ça ne résolvait pas le problème.

La solution fut finalement de remplacer le 1er transistor npn par un relais 12V qui est lui-même piloté par un transistor npn.

schéma pompes

 

⇑Sommaire

Caméra

 

Nous avions au départ un problème de batterie qui nous a même fait envisager d’enlever la caméra : en effet, la caméra s’éteignait au bout de quelques petites minutes. Finalement, nous avons changé de caméra et nous la rechargeons grâce à une batterie nomade en cas de besoin.

Nous avions aussi rencontré un autre problème qui empêchait cette nouvelle caméra de fonctionner, problème résolu par une mise à jour du firmware.

 

⇑Sommaire

 


Gestion de projet

 

Etant donné notre effectif ( 7 personnes ) nous nous devions d’être rigoureux dans la gestion et l’administration des tâches. Nous avons pour cela créer un dossier Google Drive partagé entre nous, sur lequel nous nous sommes organiser pour être sur que tout le monde avance ensemble sur le projet, éviter que trop ou trop peu de personnes travaillent sur la même chose, et garder le fil quant à la direction que nous voulions donner au projet.

⇑Sommaire

 


Manuel Technique

 

Pour reprendre notre projet, il faudra se référer au tableau budget afin d’identifier tout ce qui se trouve sur le bateau, et continuer de programmer différentes fonctions sur l’arduino en démarrant grâce à ce tutoriel qui explique les bases.

Ne pas oublier de bien regarder les caractéristiques des batteries pour savoir comment les rechargées.

Les robots étant faits pour des enfants, leur utilisation est très facile. Pour les robots combattants, il suffit de le brancher comme ceci la batterie et le moteur sur l’arduino :

Branchement moteur batterie sur arduino

Puis de contrôler les bateaux à l’aide des manettes.

Le robot observateur est autonome, il suffit donc de le poser dans l’eau et de lancer le moteur à l’aide du branchement vu précédemment.

⇑Sommaire

 


Bilan

 

Ces 4 semaines de projet nous ont appris à étudier pour directement mettre en application les notions vues, ce qui permet de mieux les acquérir et de pouvoir associé la théorie à la pratique.

Dans notre groupe de 7, nous avons aussi beaucoup travaillé afin de bien se répartir les tâches, de bien avancer ensemble et de profiter de notre effectif pour aller plus vite et plus loin dans le projet, pour éviter que cela se transforme en handicap et nous ralentisse.

Nous nous devions aussi d’aboutir à des résultats puisque nous nous sommes engagés auprès des enfants à leur fournir des robots qui fonctionnent et avec lesquels ils pourraient jouer, nous ne pouvions donc pas les décevoir.

Dans l’ensemble, nous avons rencontrés un bon nombre de problèmes de réalisations, étant donné que nous avions beaucoup de directions dans lesquelles nous pouvions aller, nous avons pris beaucoup de temps afin de bien définir le chemin que nous donnerions au projet, et nous avons rencontré plusieurs problèmes en chemin, essentiellement techniques dans la réalisation des robots et aussi dans la programmation. Cependant nous avons toujours trouvé des solutions à nos problèmes, et nous pourrions donc conclure en disant que notre plus gros problème fut de respecter les délais.

Ce projet nous a à tous beaucoup apporté, nous avons découvert tout ce qu’implique un projet lorsqu’on le mène de A à Z et on a pu se rendre compte de l’importance de la conduite de projet afin de ne pas perdre le fil malgré tout les imprévus qui peuvent intervenir.

⇑Sommaire

 


Bibliographie

 

Voici les liens des sites qui nous ont aider à réaliser notre projet :

Tutoriel Arduino UNO

Moteur CC via Arduino

RS composants pour les datasheets

Driver moteur Arduino

Schéma électrique pour pompes

Programmation Commande Bateau

 

Voir tableau du budget pour les adresses du matériel acheté.

⇑Sommaire

 


Remerciements

 

Nous tenons à remercier nos enseignants tuteurs Mr HUEBER et Mr CHOISY de nous avoir accompagnés et conseillés durant ce projet.

Nous adressons également un grand remerciement à Mr DE SABBATA qui nous a largement aidés pour la réalisation du projet.

⇑Sommaire

 


Maquette Domotique

  • Introduction

Dans le cadre de notre formation de première année de DUT GEII (Génie Electrique et Informatique Industrielle),  le module Etudes et Réalisation (Projets) doit être réalisé. Nous avons eu la possibilité de choisir le projet qui nous intéressait le plus. Pendant 4 semaines, de mars à avril, l’emploi du temps a été grandement consacré à cela. Nous étions encadrés par des professeurs qui étaient à notre disposition et qui nous ont notés sur nos recherches et notre avancement.

Image1

 

  • Présentation du sujet

La Maquette Domotique est un ancien projet inachevé commencé il y a 2 ans, nous l’avons repris pour le continuer et le finaliser. Nous avons donc dû résoudre les problèmes rencontrés par nos prédécesseurs.

Par le biais de notre Maquette Domotique, nous devons sensibiliser les personnes sur les « énergies de demain » en simulant une maison totalement autonome énergiquement grâce aux énergies renouvelables.

Nous disposons des énergies suivantes:

-Éolien : Utilisation d’une éolienne domestique.

-Solaire : Installation de panneaux photovoltaïques ainsi que thermiques.

-Hydraulique : Cours d’eau présent afin d’alimenter une turbine hydraulique.

-Biomasse : Combustion des bio-déchets.

-Bois : Combustion de bois dans un foyer bois.

Sur la maquette, l’éolienne et la turbine hydraulique fonctionnent grâce à des moteurs.

Répartition des systèmes de production des énergies renouvelables

 

Nous devons rendre notre maquette à la fois démonstrative et ludique afin de plaire au public.

 

  • Gestion de Projet

Nous sommes suivis par un professeur, dans la matière « Conduite de projet », qui nous apprend à travailler sur des projets en général. Nous avons ainsi à faire les démarches, les explications et les présentations du projet.

Nous avons appris à planifier nos semaines pour y associer les tâches à effectuer chaque jour et ainsi éviter le plus possible les écarts.

Pour cela nous sommes un groupe de 4 étudiants :

-Maillard Guillaume : Chef de projet

-Muller Quentin

-Perreaut Romain

-Sutter Valentin

 

  • Cahier des Charges

 

Schéma « Bête à corne » :

Sans 1titre

Schéma « Pieuvre » : Fonction du projet

Sans titre

Fonction Principale : Rendre notre Maquette attractive afin de sensibiliser le public sur l’utilisation des énergies renouvelables.

Fonctions Contraintes : Nous devons prendre en compte les contraintes pour faire de notre maquette un projet rentable, intéressant et pédagogique.

Read More


Challenge Robotique National

Robot Mobile

IUT de MulhouseGEII Mulhouselogo-uha

GEII 1A 2015-2016 MULHOUSE

Projet Robot Mobile

mulhouse_rotashneck

 

 



Membres du groupe:

 

  • BRULANT Antoine
  • DIAKHATE Matar
  • JUNCK Kevin
  • MARIAN JUDE Antony
  • SCHNELL Vincent
  • WAGNER Mickael

 

 

Présentation du sujet:

 

Dans le cadre du DUT Génie Électrique et Informatique Industrielle (G.E.I.I.) nous sommes amenés à réaliser un projet au courant du 2ème semestre. Cette année nous pouvions choisir entre 14 sujets différents. Nous avons choisis ce projet car nous nous sentons tous les 6 attirés par la robotique.

Notre projet est donc le suivant:

Nous devons concevoir et construire un robot qui  devra être indépendant, on peut donc dire qu’il sera plus ou moins doté d’une intelligence artificielle.

Le principe est simple, notre robot sera placé dans un coin du playground (dans ce cadre il s’agit d’une plate-forme utilisée pour tester un robot) de 8×8 mètres sur lequel seront placés des obstacles. Le but de la manœuvre étant que le robot atteigne le coin opposé du playground le plus rapidement possible et qu’une fois arrivé, il crève un ballon gonflable accroché sur son toit. Pour ce faire nous avons le droit d’utiliser tous les capteurs possibles et nous avons aussi le droit de placer jusqu’à 3 balises autours du ring pour pouvoir guider notre robot vers l’arrivée. Cependant un châssis nous est imposé.

 

Playground


 

 

Cahier des charges :

 

Bête à corne :

 

bete a corne

Diagramme Pieuvre :

 

Pieuvre_Projet

 

 

 

Pour résumer le diagramme pieuvre ci-dessus:

  • Le robot doit avant tout être capable de traiter les informations acquises à travers les capteurs et de se déplacer en fonction de celles-ci pour accéder à l’arrivée.

Cependant pour respecter les contraintes qui nous sont imposées le robot devra :

  • Traiter des informations grâce à un microcontrôleur (PIC 18F4520)
  • Être équipé de capteurs pour pouvoir détecter des obstacles
  • Être guidé par des balises
  • Remplir les conditions d’admission au concours robotique de Cachan
  • Être réalisable avec un budget de 200
  • Être terminé avant la présentation finale qui aura lieu fin Juin
  • Alimenté à partir d’une batterie 12V placée sur le robot
  • Posséder des moteurs et une interface de puissance pour pouvoir se déplacer

 

 


 

Gestion du projet:

Nous avons très rapidement compris qu’on pouvait découper notre projet en 3 parties afin de réaliser un robot conforme au normes imposées.

Ces 3 parties sont les suivantes:

  1. La motorisation du robot
  2. Détection d’obstacles
  3. Le guidage sur le playground

Nous sommes un groupe de 6 personnes,donc nous avons décider de nous diviser en 3 sous-groupes de 2 personnes afin de traiter toutes les parties simultanément.

1. Motorisation

 

Photo

Ainsi pour ce qui est de la partie motorisation du robot, Vincent et Matar ont utilisé des ponts en H dans le but de contrôler le sens de rotation du moteur ainsi que des sorties PWM (Pulse in With Modulation) afin de pouvoir gérer la vitesse de rotation des moteurs à l’aide d’une tension continue.

Pont en H

Test de la Motorisation

 

2. Détection

Pendant ce temps, Antony et Antoine se sont concentrés sur la détection des obstacles. Ils ont fini par conclure que l’outil le plus adapté pour repérer des obstacles est le capteur à ultrasons. Ainsi,il nous suffira d’envoyer des ondes dans la direction vers laquelle se déplace notre robot et de mesurer le temps que prendra l’onde pour revenir.Cela permettra de savoir à quelle distance se trouve l’obstacle et ainsi nous pourrons éviter tout obstacle qui se dressera devant notre robot.

capteur ultrason

Vidéo du fonctionnement de la partie Motorisation et Détection

 

3. Guidage

Mickaël et moi,nous avons travaillé sur cette 3ème partie. Après avoir évaluer toutes les solutions qui s’offraient à nous, nous avons conclu qu’utiliser une balise infra-rouge reste la meilleure option possible compte tenu de notre budget et de la durée du projet. Nous avons donc repris la balise qui a été fabriquée par le groupe de projet de l’année dernière et nous avons reprogrammé le microcontrôleur PIC18F4520 qui sera d’ailleur notre plate-forme de programmation tout au long du projet.

Bilan:

Actuellement,les 3 parties qui sont essentielles à la réalisation de notre robot sont terminées. Dans chacune des parties nous avons opté pour les méthodes les plus répandues pour la simple et bonne raison que ce sont les plus sûrs et les plus précises.

Pour ce qui est de la motorisation,nous  choisissons d’utiliser deux moteurs (un pour chaque roue) alimentés en PWM à l’aide d’un pont en H ainsi nous pouvons contrôler la vitesse et le sens de rotation.

Pour la détection d’obstacle,les émetteurs et récepteurs ultrasons ont été simple à contrôler et leurs précisions sont largement suffisantes pour subvenir à nos besoins ce qui justifie notre choix.

Pour le guidage,nous avons fait le choix d’utiliser des balises infrarouges car c’était la meilleure solution dans notre cas,compte tenu du fait que les autres solutions n’étaient pas réalisables avec notre budget ou étaient trop difficiles a mettre en œuvre.

 

Actuellement nous avons chacun fini nos parties mais nous n’avons pas encore pu mettre en commun pour créer un prototype. Cependant nous allons attaquer cette dernière phase du projet dans les jours à venir pour pouvoir finir notre projet dans les délais.

 

 

Conclusion:

Ce projet nous a aidé a mieux appréhender le travaille en équipe et nous a permis d’appliquer tous les cours théoriques que nous avons eu depuis le début de l’année.

Cependant nous nous sommes tous rendu compte que mener à termes un projet n’est pas toujours aussi facile que l’on le pensais. Nous avons dû faire beaucoup de recherches sur différents sujets pour pouvoir réaliser chacun nos parties. La partie programmation a été l’une des difficultés majeurs dans ce projet car nous n’avions jamais programmé un PIC auparavant.

Nous avons tous réalisé que lorsque nous rencontrons des problèmes,il est préférable de travailler tous ensemble pour résoudre le problème en vitesse et sans ambiguïté.

Au final nous sommes tous d’accord sur le fait que cette expérience est des plus enrichissantes car nous rencontrons de nombreux problèmes que nous serions souvent incapable de résoudre seuls, mais nous apprenons à les surmonter ensemble en équipe, ce qui nous permet de repousser nos limites et d’accélérer notre productivité


 

 

Portes_ouvertes_2016

 


Table traçante XY

Logo_IUT_Mulhouse                                              GEII

                                    capture_06232016_154752

Introduction

Etudiants de GEII première année, nous sommes arrivées a une période de l’année( mois de mars) que le département au projet d’étude et de réalisation de 1 ére année. C’est dans ce cadre là que plusieurs sujet de projets nous sont proposé. Libre aux étudiants de choisir sur quel projet ils vont se consacrer sur une période de 70 heures reparti en 4 semaines.

Dans notre cas, il s’agit du projet de la table traçante  XY.
prj 077

 

Read More


NAO sur Robotino

 

NAO se déplace

 

939397_10207861829137193_139388995_o

 

Résumé

 

Le département GEII de l’IUT de Mulhouse dispose de 4 robots humanoïdes NAO programmables qui sont capables de se déplacer en parfaite autonomie . Néanmoins, leur vitesse de marche reste très limitée. C’est pourquoi, il serait intéressant de pouvoir les asseoir sur un robot beaucoup plus mobile, un RoboTino, lui aussi à la disposition du département au nombre de 2. L’idée est donc de les rendre capables de réceptionner des informations transmises par le NAO afin de pouvoir amener celui-ci à bon port.

Une fois cette tâche établie, la finalité du projet serait de permettre au NAO d’accueillir et de guider des visiteurs au sein du bâtiment B grâce notamment au système de reconnaissance vocale du NAO et de ses différents capteurs.

Introduction

 

NAO est un robot humanoïde développé par Aldebaran Robotics, une start-up française basée à Paris, c’est un robot équipé de 14 à 25 degrés de liberté (=articulations) suivant les différents modèles proposés par la firme, ceux de l’IUT étant des modèles en ayant 25. Ce robot embarque un noyau linux (baptisé naoqi) ainsi que tout un panel de capteurs dont 4 capteurs ultrasons sur son torse pour l’évaluation des distances, 8 capteurs de pression, 2 caméras et 2 bumpers à ses pieds afin de détecter d’éventuels obstacles. Le tout pour un poids total de 4.8 kg et une hauteur de 58 cm. Il est surtout utilisé en laboratoire ou dans le domaine de l’enseignement comme c’est ici le cas.

En ce qui concerne son robot mobile, il s’agit d’un RoboTino développé par la firme Festo établie en Allemagne à Esslingen. C’est un robot programmable par PC, bardé de capteurs et capable de se déplacer en parfaite autonomie. Grâce à ses 3 moteurs et à ses roues suédoises, RoboTino peut se déplacer dans toutes les directions ainsi que tourner sur lui-même.

Il s’agit donc de notre projet du second semestre durant lequel nous avons travailler à faire communiquer les deux robots et rendre le tout fonctionnel.

Présentation du Sujet

 

Au cours de notre DUT GEII, nous sommes amenés lors du second semestre de notre première année à travailler sur un projet de notre choix parmi une dizaine de projets qui nous ont été proposés. Une fois le second semestre terminée, l’évaluation s’effectuera au cours d’une soutenance finale que nous avons eu le temps de préparer durant nos cours de conduite projet avec Monsieur ROTH. L’évaluation portera aussi sur notre esprit d’équipe, notre implication et le sérieux dont nous avons fait preuve au cours de toute la durée de notre projet.

Cahier des Charges

 

Préambule :

  • La société française Aldebaran Robotics, propose un robot humanoïde NAO autonome et programmable notamment destiné à des activités pédagogiques.
  • En 2008, la société lance une version academics de son robot afin de permettre son utilisation dans des laboratoires et dans des établissements d’enseignement tels que des universités
  • Le département GEII de l’IUT de Mulhouse possède ainsi 4 robots NAO au jour d’aujourd’hui.

Présentation :

  • Ils sont capables de recevoir et de guider des visiteurs potentiels à un endroit donné.
  • Les robots NAO sont donc des appareils capables de se déplacer de façon autonome au sein de leur environnement, mais leur vitesse de déplacement reste très limitée, restreignant ainsi grandement leur capacité d’accueil de visiteurs.
  • Le département GEII de l’IUT ayant aussi à sa disposition un robot mobile RoboTino capable de se déplacer en recevant des instructions au sein d’un réseau wifi, NAO doit pouvoir s’atteler à celui-ci et lui transmettre les bonnes informations pour arriver à destination.

Critères généraux :

  • L’assise de NAO sur le RoboTino doit être suffisamment stable pour assurer sa protection.
  • Mettre au point un dialogue commun entre les deux robots.
  • Une signalétique préalablement établie doit être mise en place au sein du bâtiment afin que NAO puisse s’orienter et donc transmettre les bonnes informations au robot mobile.

Critères de fonctionnement :

  • L’ensemble doit pouvoir se déplacer dans toutes les directions.
  • L’ensemble doit être capable de détecter et d’éviter un obstacle potentiel, que ce soit un objet ou une personne.
  • L’ensemble doit arriver à destination.

Critères techniques :

  • Prise en main du logiciel choregraphe et du langage python (NAO).
  • Prise en main du logiciel RoboTino view (Robot mobile).
  • Communication wifi entre les deux robots ou via des Entrées sorties + choix du routeur du robotino ou d’un routeur indépendant.
  • Utilisation de données UDP.

Bête à cornes:

 

Capture

Pieuvre:

 

Capture

Diagramme de Gantt

 

Capture

 

Développement

 

Nous pouvons distinguer plusieurs grandes étapes clés de notre projet, à savoir: (par ordre chronologique)

 

1°)La mise au point et la réalisation de l’assise:

Après avoir pensé à de multiples systèmes d’assise du NAO sur le Robotino, nous nous sommes décidé pour un système de « chaise » tout simplement, nos autres idées étant beaucoup plus complexes à réaliser et pas forcément plus efficaces. Parmi celles-ci, nous avons pensé à un socle surmonté d’une longue tige où fixer NAO debout dessus (solution pas vraiment stable), un système d’assise mais sans dossier avec un système de renne où NAO pourrait s’accrocher (plus ludique mais très instable elle aussi) ou encore un système d’escalier permettant à NAO de grimper de lui-même sur le robot mobile (solution difficile à mettre en oeuvre, risquée et sûrement très instable une fois de plus donc très vite abandonnée).

La solution de la chaise nous semblait donc être le meilleur choix.

 

12295005_10207861828897187_1779894414_o12422356_10207861828657181_397824911_o

 

2°)La prise en main des logiciels et du langage python:

Une fois la partie mécanique du projet résolue, nous avons commencé à nous initier à la programmation des deux robots puisque ce fût du matériel et un environnement de travail totalement nouveau pour nous. Nous nous sommes par la suite aussi intéressés aux bases du langages python nécessaire à la programmation de la mise en réseau des deux robots.

L’ensemble de cette période d’initiation a été opérée grâce notamment aux documents constructeurs et des divers tutos mis à notre disposition par nos professeurs tuteurs.

3°)Echanges de données UDP

Après avoir passer les quelques premières séances à nous approprier le projet et ses différents facteurs, nous avons pû commencer à nous attaquer au coeur même du sujet: la communication entre les deux robots.

Nous avons été aiguillé vers une utilisation de données UDP pour ce faire puisqu’il s’agit d’un des principaux protocoles de télé-communication au même titre que les données TCP, l’avantage des données UDP étant leur plus grande simplicité puisqu’elle n’implique pas de  » handshaking », cette simplicité qui à le défaut de ne pas garantir la bonne livraison du message envoyé.

C’est ici qu’intervient le langage python puisqu’il nous a permis de programmer un bloc vierge sur Choregraphe à l’origine de la communication entre les deux robots. En effet, ce bloc permet l’envoi de trames UDP du NAO à un serveur localisé sur le pc où le logiciel du robotino est lancé qui, lui, transmet ces trames au robotino afin de lui ordonner tel ou tel déplacement.

Pour être plus précis, nous avons récupérés grâce à un logiciel tiers (spyder) les codes générés par le robotino lors de chacun de ses déplacement (1 déplacement=1 code spécifique), nous avons ensuite fais correspondre chacun de ces codes à une instruction reconnue par le NAO (tout d’abord de type numérique puis de type vocal et enfin grâce au système de Nao Mark) à l’intérieur de ce bloc vierge sur l’interface Choregraphe propre au NAO.

 

Copie de nao mark code

 

 

 

Une fois cette étape établie, le reste de la programmation en python dans ce bloc permet l’envoi de ces codes sur un serveur que nous avons préalablement lancé et configuré sur RobotinoView.

 

tino1 - Copie

 

4°)Programmation de chacun des robots

Une fois la communication entre les deux robots établie, nous avons pu finaliser la programmation que nous avions esquissés de chacun de nos 2 robots puisqu’ils étaient jusqu’alors sommairement programmés afin de répondre à des ordres simples.

 

Notre programme RobotinoView:

 

Copie de tino1

 

Notre programme Choregraphe:

 

photo nao commande

 

Gestion de Projet

 

Notre chef de projet est Louis Spiesser et pour ce qui est  de la répartition des tâches, nous avons décidé de scinder l’équipe en deux:

  • Louis et Loïc ont été chargés de travailler sur NAO et son logiciel Choregraphe.
  • Luigi et Jean-Michel ont quant à eux été chargés de travailler sur le Robotino et son logiciel RobotinoView.

 

Ressources et bilan financier

 

Pour ce qui est des ressources utilisées, nous n’avons certes pas eu la nécessité de dépenser les 200 € mis à notre disposition mais nous avons cependant eu accès du matériel très couteux. En effet, nous avions à notre disposition 4 robots NAO valant 5000 € pièce ainsi qu’à deux robotino valant 8000 euros pièce sans compter la matière première et l’outillage fournis par l’IUT et nécessaire à la fabrication de notre assise.

 

Perspectives

 

Suite aux problèmes de portée wifi que nous avons rencontrés au cours de notre projet, nous avons été contraints de modifier la finalité de notre projet: A savoir, effectuer un itinéraire donné au sein de la salle B19, alors que notre perspective première était de pouvoir permettre à notre NAO de se déplacer au sein du bâtiment B voire même accueillir et présenter le bâtiment à des visiteurs potentiels.

Conclusion

 

Dans l’ensemble, notre projet s’est plus ou moins bien déroulé. En effet, nous avons eu pas mal de problèmes notamment au niveau du wifi comme expliqué précédemment mais aussi à d’autres niveau, principalement en ce qui concerne les Robotino puisque nous avons eu des problèmes de fusibles, de batterie et de clé wifi. Malgré cela, nous avons fini dans les temps tout en ayant progressé en programmation (Python) ou en réseau.

Au delà de cet approfondissement de nos connaissances en programmation et de notre initiation au réseau, ce projet nous a permis de développer un esprit d’équipe sur le long terme et d’effectuer un travail en autonomie sur une longue période.

En conclusion, malgré des hauts et des bas, ce fût un projet extrêmement intéressant malgré sa difficulté certaine et nous en tirons néanmoins un très bon souvenir.

 

Merci de nous avoir lu.

 

 

12499024_10207862073903312_1089619124_o

Jean-Michel, Loïc, Louis et Luigi